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Abstract--A simple equation to predict the size of droplets formed during the breakup of  cylindrical liquid 
jets is obtained from instability analysis. This droplet-size equation applies to low-velocity, liquid-in-liquid 
and liquid-in-gas jets involving Newtonian or non-Newtonian fluids that follow power-law shear stress 
versus deformation rate relationships. The equation is tested by comparing the resultant theoretical 
predictions for droplet size with experimental data for seventeen Newtonian liquid systems and five 
power-law non-Newtonian/Newtonian liquid systems (power-law liquid jet in Newtonian liquid and 
Newtonian liquid jet in power-law liquid), as well as with numerical solutions to Tomotika's equation. 
Good agreement is observed. The present analysis demonstrates clearly the dependence of  droplet size on 
a modified Ohnesorge number. 
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1. I N T R O D U C T I O N  

When a liquid issues from an orifice into another immiscible fluid (either liquid or gas), droplets 
may form near the orifice or at the end of the jet as a result of capillary instability (Rayleigh 1945). 
This phenomenon is the basis for a wide range of phase-contact applications involving liquid-in-gas 
systems (e.g. atomization and sprinkling), and liquid-in-liquid systems (e.g. liquid-liquid extraction 
and emulsification). Linearized theories for jet instability and breakup have been developed by 
Rayleigh (1878) & Weber (1931) for liquid-in-gas systems and by Tomotika (1935) for liquid-in- 
liquid systems. According to Rayleigh (1878), the breakup of the jet is induced by the "most-un- 
stable wave", which experiences the maximum growth rate in amplitude and can be determined 
at the early stage of jet instability. This maximum instability theory leads to the formation of 
uniformly-sized droplets. 

Tyler (1933) was first to analyze droplets formed from the breakup of  cylindrical liquid jets 
discharging into a gas. By applying Rayleigh's instability theory for inviscid liquid jets in a vacuum 
and a mass balance at the end of the jet, Tyler obtained the following relationship between droplet 
diameter, d, and the undisturbed jet diameter, dj: d = 1.91~. Based on Tyler's relationship, if the 
undisturbed jet diameter is known, droplet size can be determined. However, in many liquid-in- 
liquid systems, droplet size is strongly influenced by the properties of the jet and ambient fluids, 
and since the jet is very short, the undisturbed jet diameter is largely a theoretical abstraction; thus, 
Tyler's relationship is not appropriate for liquid-in-liquid systems. 

Liquid-in-liquid droplets generally are not as uniform in size as those formed in liquid-in-gas 
systems. Meister & Scheele (1969) found that in many liquid-in-liquid systems, at the early stage 
of  jet instability, surface deformation of the jet is harmonic. However, at the latter stage of jet 
instability, higher harmonics occur on the jet surface and surface deformation of the jet becomes 
irregular, producing non-uniform-size droplets. In these cases, Rayleigh's maximum instability 
theory is not applicable. Kitamura et al. (1982) pointed out that the pattern of droplet formation 
in liquid-in-liquid systems depends on the jet velocity. (This differs significantly from liquid-in-gas 
systems in which the jets generally form uniformly-sized droplets in the capillary instability regime.) 
If the jet velocity is low, the surface disturbance wave is harmonic, producing uniformly-sized 
droplets. However, as the jet velocity increases, the surface disturbance wave becomes irregular, 
producing non-uniformly-sized droplets. Based on the experiments performed by Meister & Scheele 
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(1969) and Kitamura et al. (1982), in liquid-in-liquid systems, uniform-size droplets form only in 
systems with low jet velocities. Kitamura et al. (1982) demonstrated that droplet sizes are also 
uniform in liquid-in-liquid systems with low jet-versus-ambient relative velocities, and if the relative 
velocity is zero, droplet size does not change with changes in absolute velocity. 

In low-velocity, liquid-in-liquid systems, Tomotika's linearized instability theory can be applied 
to the analysis of droplet formation (Kitamura et al. 1982). However, Tomotika's dispersion 
relationship (Tomotika 1935) is an implicit equation in complex form; therefore, applying that 
equation to the analysis of droplet formation is extremely difficult. Although several relatively 
simple limiting solutions to Tomotika's equation have been obtained (e.g. Meister & Scheele 1967; 
Lee & Flumerfelt 1981), those solutions are not applicable to many flow systems of practical 
importance. 

Employing an integro-differential approach, Kinoshita et al. (1994) recently developed a 
simplified alternative to Tomotika's implicit, complex equation--an explicit dispersion equation 
applicable to both liquid-in-liquid and liquid-in-gas systems. The present, follow-on study, is 
undertaken to (1) develop a theoretical method based on the instability analysis by Kinoshita et al. 
to predict the size of droplets formed in the breakup of liquid jets and (2) validate the theoretical 
results by comparing them with experimental data and with numerical solutions to Tomotika's 
equation. 

2. THEORY 

The system of interest comprises a viscous, low-velocity liquid jet issuing into another immiscible, 
initially stagnant viscous fluid (liquid or gas). The flows of both the jet and ambient fluids are 
assumed laminar. As a result of capillary instability, the jet breaks up into discrete droplets. 

At low jet velocities, jet breakup results in a train of uniform-size droplets (Meister & Scheele 
1969; Kitamura et al. 1982; Kitamura & Takahashi 1982). In the present analysis, these droplets 
are assumed to be spherical, with diameter d. It is further assumed that the rate of droplet formation 
is constant and, over time interval At, N droplets are produced. The volume of the N droplets is 
Vj = Nxd3/6 .  Over the same time interval, the volume of the jet fluid exiting the orifice is 

f A x  ~ ~ 2 V2= , ~ d S u o d t  = ~ d o u o A t ,  [1] 

where do and u0 denote orifice diameter and bulk-mean jet velocity at the orifice, respectively. For 
constant jet fluid density, continuity demands that V~ = V2. Thus, 

7"[" 3 ~ 2 
N g d- = ~ douoAt. [2] 

At low jet velocities, surface deformation of the jet is controlled by the most-unstable disturbance 
wave at both the early and latter stages of jet instability (Meister & Scheele 1969; Kitamura et al. 
1982); i.e. higher harmonics are not prevalent during the transition process. Hence, it is assumed 
that each most-unstable disturbance wave produces a single droplet; so, uoAt = N2m, where 2,, is 
the most-unstable wavelength. Thus, [2] becomes 

7r N d  3 7z dZoNZ, ' [3] g = g  . 

Defining a dimensionless most-unstable wave number as q , , -  7zdo/2,,, [3] may be rewritten as 

= \ 2~,,/ " [4] 

Equation [4] provides an expression for droplet diameter in terms of t/m which, in turn, can be 
obtained from instability analysis. Several investigators (e.g. Tomotika 1935; Kinoshita et al. 1994) 
have analyzed jet instability under the conditions assumed in this study. Tomotika's dispersion 
equation can be expressed as 

det([a;;]) = O, [5] 
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where [a¢/] is a 4 x 4 matrix. All of the elements in the matrix contain Bessel functions of q, ~h, 
or ~, where q is a dimensionless wave number, q ~ - q 2 + ~ / 2 Z ,  02=q2+(fl/2Z)t3/pp/ft,  
[3-~(2pr~/a) ~/2 is a dimensionless growth rate, Z-l~(2r/po)  1/: is the Ohnesorge number, and r/ 
is the undisturbed jet radius. (The caret signifies properties of the ambient fluid.) For low-velocity, 
liquid-in-liquid systems, it may be assumed that r~ ~ do/2. In concept, [5] may be expressed by the 
following relationship: 

= ~(~, ~,, O, : / p ,  ~/~, Z). 

q,, can be determined from this relationship; however, in general, [5] must be solved numerically 
(Meister & Scheele 1967; Kitamura & Takahashi 1986). Kinoshita et al. (1994) developed the 
following simple alternative to Tomotika's implicit, complex equation--an explicit dispersion 
equation applicable to both liquid-in-liquid and liquid-in-gas systems: 

[6] 

where K0 and K~ are zeroth- and first-order modified Bessel functions of the second kind. The jet 
is unstable whenever /~ > 0, which requires q < 1. Under such conditions, Ko(r/)/K~(q)< 1 and 
qKo(q)/Kl(q)<< 1. Thus, for liquid jets that satisfy the condition, ~/p < 2 (which is generally met 
with liquid jets), [6] reduces to 

/~: + 2Z(3 + t~/#)q:[3 = q2(1 - r/z). [7] 

Based on Rayleigh's maximum instability theory, the most-unstable wave number can be obtained 
by applying the condition d/~/dr/[,=,,, = 0 to [7]: 

r/., = (2 + 2 z * )  1/2, [8] 

where Z*-(3/x  +fi)/(doop) I/2 is a modified Ohnesorge number. Substituting [8] into [4] and 
rearranging yields the following equation for droplet size 

d (37r~ 1'3 
k ~ /  (1 + Z*) ','6. [9] 

Equation [9] applies to low-velocity, liquid-in-liquid or liquid-in-gas systems, involving Newtonian 
or non-Newtonian fluids (provided that suitable apparent viscosities can be specified for the latter). 
For highly viscous liquid jets in low viscosity liquids, the effect of the ambient liquid becomes 
insignificant (Z* --* 3Z) and [8] reduces to Weber's classical result (Weber 1931): r/,,, = (2 + 6Z) ~2. 
In this limiting case, Weber's instability theory can provide reasonably accurate droplet-size 
predictions. 

3. COMPARISON OF THEORY WITH EXPERIMENT 

To test the validity of the theoretical analysis described in the previous section, predictions of 
droplet size obtained using [9] are compared with experimental results for seventeen Newtonian 
and five non-Newtonian liquid-in-liquid systems (Kitamura et al. 1982; Kitamura & Takahashi 
1982). All of the non-Newtonian liquids tested have shear stress versus deformation rate 
relationships that follow power laws (i.e. are ineleastic, shear-thinning viscous non-Newtonian 
fluids), having rheological parameters, K and n, that obey 

3.1. Newtonian liquid systems 

Kitamura et al. (1982) conducted experiments employing a variety of Newtonian fluids for the 
jet and ambient liquids. In their experiments, droplet images were captured with high-speed 
photography and the volume-surface mean diameters of 50-100 droplets were used to determine 
droplet size. In those tests, jets of either kerosene, n-heptane, n-butanol, or mixtures of liquid 
paraffin and kerosene discharged into water or aqueous solutions of starch syrup. The systems 
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Table I. Newtonian systems: comparison of measured and predicted droplet sizes" 

Droplet size, d (cm) 
Interfacial 

Density Viscosity tension Predicted via 
Jet fluid p /a a 

System b (ambient fluid) c (kg/m 3) (10 -3 Pa-s) (10 -2 N/m) Measured [9] [4] and [5] 

1 n -heptane 676 0.403 5.12 0.237 0.230 0.234 
(water) 996 0.829 

2* n-heptane 686 0.426 5.12 0.181 0.164 0.167 
(water) 999 1.09 

3 kerosene 790 1.27 4.42 0.227 0.230 0.235 
(water) 996 0.834 

4* kerosene 797 1.40 4.47 0.165 0.164 0.167 
(water) 999 1.08 

5 kerosene/paraffin 831 8.00 4.22 0.240 0.234 0.237 
(water) 996 0.806 

6 kerosene/paraffin 848 18.8 4.04 0.250 0.239 0.241 
(water) 998 1.03 

7* kerosene/paraffin 818 3.34 4.27 0.160 0.165 0.168 
(water) 999 1.05 

8 n-heptane 683 0.407 5.60 0.183 0.230 0.168 
(aq.SS sol.) 1126 3.71 

9 kerosene 788 1.25 4.50 0.244 0.231 0.235 
(aq.SS sol.) I 117 2.73 

I0 kerosene 790 1.26 4.95 0.249 0.231 0.236 
(aq.SS sol.) 1154 5.46 

11 kerosene/paraffin 831 8.00 4.30 0.255 0.234 0.238 
(aq.SS sol.) 1117 2.78 

12 kerosene/paraffin 847 15.9 4.20 0.260 0.238 0.240 
(aq.SS sol.) 1116 2.61 

13 kerosene/paraffin 849 17.3 3.90 0.268 0.239 0.242 
(aq.SS. sol.) 1132 3.35 

14 kerosene/paraffin 854 24.7 2.52 0.278 0.245 0.247 
(aq.SS.sol.) I 158 6.97 

15 kerosene/paraffin 848 18.1 4.20 0.283 0.242 0.244 
(aq.SS. sol.) 1233 22.9 

16* kerosene/paraffin 817 3.30 4.75 0.202 0.165 0.169 
(aq.SS. sol.) 1126 3.80 

17* n-butanol 849 3.87 1.50 0.180 0.173 0.175 
(water) 991 1.33 

"Properties information and experimental data from Kitamura et al. (1982). 
b, denotes systems with d o = 0.087 cm; d o = 0.122 cm for all other systems. 
cSS denotes starch syrup. 

e x a m i n e d  fall w i th in  the  f o l l o w i n g  r anges  o f  p r o p e r t y  values:  0.61 < ¢~/p < 1.47, 0.05 < / i  ~It < 9.12, 

a n d  1.88 x 10 3 < Z < 152 x 10 -3. T a b l e  1 p r o v i d e s  de ta i l s  o f  the  e x p e r i m e n t s  a n d  c o m p a r e s  

m e a s u r e d  d r o p l e t  sizes w i th  the  p r e d i c t i o n s  o f  t he  p r e s e n t  s tudy .  T h e  r e l a t i o n s h i p  b e t w e e n  d r o p l e t  

size ( b o t h  m e a s u r e d  a n d  p r e d i c t e d )  a n d  m o d i f i e d  O h n e s o r g e  n u m b e r  is s h o w n  in f igure 1. 
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Figure 1. d/do = f ( Z * )  relationship. Experimental data: Newtonian systems from Kitamura et al. (1982); 
power-law/Newtonian systems from Kitamura and Takahashi (1982). 
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3.2. Power-law liquid/Newtonian fiquid systems 

Two different situations involving power-law non-Newtonian liquids are analyzed: (I) Newto- 
nian liquid jets discharging into power-law liquids; and (2) power-law liquid jets discharging into 
Newtonian liquids. In the former, the jet fluid is either n-heptane or mixtures of liquid paraffin 
and kerosene, and the ambient fluid comprises aqueous carboxymethyl cellulose (CMC) solutions; 
in the latter, the jet fluid is either polystyrene or styrene butadiene rubber (SBR) solutions in xylene, 
and the ambient fluid is water. In the experiments, droplet sizes were determined via the same 
method as that for Newtonian systems. 

For power-law liquid jets in Newtonian liquids, at the jet/ambient fluid interface, [10] may be 
rewritten as 

, \OZ , '  
where the subscript s denotes the conditions at the interface. For wave motions in which wavelength 
;->>n, I&:/&l,>>l&,/&l, (Levich 1962); thus, the term on the right-hand side of [I 1] containing 
rheological parameters may be approximated as 

\ Oz + ~r \Or " [12] 

For low velocity liquid jets, it may be assumed that (Ou:/&)s~uo/rj~uo/(do/2); thus, 
K(au:/Or )~- ~ = K'(do/uo) ~ -". Equation [i 1] becomes 

Tr':K'(do~l-n(OUr'dl-~-~)s''-" ~kU0J ~ 0 Z  [13] 

An apparent viscosity for the power-law jet liquid can be defined as/~* = K'(do/uo)~ ". In temporal 
instability, the liquid jet essentially is a capillary tube; therefore, a general expression for Reynolds 
number is (Skelland 1967) 

d~u~-"p ( 4n y 
R , -  8" ' ~ \ 3 n + l ) "  [141 

Comparing [14] with the equivalent relationship for Newtonian fluids yields the following 
expression for the apparent viscosity of the jet liquid 

/~* = 6 + -  -- [15] 
n / \ u 0 /  

Thus, K'  = (K/8)(6 + 2/n)". 
For Newtonian liquid jets in power-law liquids~ 

&Z "Y~ - ' (ctu~ + ~fir-). ' . [16] 

If a coordinate system that moves with the jet is chosen, near the interface, the flow field of the 
ambient fluid is primarily induced by the surface disturbance wave; thus, for capillary instability, 
laa:/arl#>laC, r/&l, (Kinoshita et al. 1994). The term on the right-hand side of [16] containing 
rheological parameters can be approximated as 

\ az  + & - r . ,  ~ K  ~ . ,  . [171 

In the ambient liquid, viscous effects are important only near the interface; i.e. in the induced flow 
region (Kinoshita et al. 1994). If the viscous layer is assumed to be confined to the region 
ri < r < r; + do, then (c~fi:/c~r)., ~ uo/do; therefore, 

e'( fl I t, l 
- \u0/  ," 

As done earlier, the apparent viscosity for the power-law ambient liquid may be defined as 
fi*-K.'(do/uo) ~ 'L Since K'  depends only on rheological parameters, it may be assumed that 
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Table 2. Non-Newtonian systems: comparison of measured and predicted droplet sizes ~' 

System b 

Interfacial Droplet size, d (cm) 
Density Viscosity tension 

Jet fluid p p ~ Predicted via 
(ambient fluid) (kg/m ~) (10 ~Pa-s) (10 2N/m) Measured c 19l 

I * n-heptane 687 0.370 5.02 0.176 0.164 
(0.25wt% aq. CMC sol. 1000 --  
Kin = 0.028/0.71 ) 

2* kerosene/paraffin 816 3.23 4.27 0.168 0.166 
(0.12wt% aq. CMC sol. 1000 - -  
K/n = 0.0106/0.88) 

3" kerosene/paraffin 842 14.2 4.00 0.200 0.171 
(0.18 wt% aq. CMC sol. 1000 --  
K/n = 0.0159/0.88) 

4 polystyrene/xylene 878 2.58 0.237 0.232 
Kin = 0.0088/0.88 
(water) 999 1.16 

5 SBR/xylene 874 2.58 0.232 0.230 
K/n = 0.0223/0.88 
(water) 999 I. 19 

"Properties information and experimental data from Kitamura & Takahashi (1982). 
b'denotes systems with d o = 0.087 cm; d o = 0.122 cm for all other systems. 
cObtained by interpolating graphical results from Kitamura & Takahashi (1982). 

k ' = ( / ~ / 8 ) ( 6 + 2 / h ) e ;  thus, [15] also applies to the power-law ambient liquid. Therefore, for 
power- law/Newtonian  systems, the modified Ohnesorge number  can be evaluated by employing 
[151. 

Table 2 provides details o f  experiments performed by Ki tamura  & Takahashi  (1982), and 
compares  droplet  diameters measured in that study with predictions based on [9]. The relationship, 
d/do = f ( Z * ) ,  for power- law/Newtonian  liquid systems is also shown in figure 1. In the experiments, 
0 < u0 < 1.2 m/s. Average apparent  viscosities, obtained for reference velocities o f  u0 = 0.4, 0.8, and 
1.2 m/s, were used to determine the modified Ohnesorge number.  

4. D I S C U S S I O N  

Tables 1 and 2 (and figure l) indicate good agreement between droplet diameters predicted by 
this study and measured values for both Newtonian  and power- law/Newtonian systems. For  
Newtonian  systems, the average difference between predictions and measurements is 8.1% and the 
maximum difference is 25.7%; for power- law/Newtonian systems, the average difference is 5.1% 
and the maximum difference is 14.5%. In the five power- law/Newtonian systems studied, the 
"viscous effects" o f  power-law fluids on droplet sizes were described well by utilizing apparent  
viscosities. In both  Newtonian  and power- law/Newtonian systems, the largest differences in 
predicted and measured behavior  occur in systems comprising fluids with high viscosities. These 
differences may reflect a significant orifice effect which is not considered in the instability analysis 
based on an infinitely long, cylindrical liquid jet. (Based on the empirical correlation introduced 
by Ki tamura  & Takahashi  (1986), rj /(do/2)= 1 + f ( B o ) ,  where [~o=--d~gAp/a is the Bond number.  
For  all of  the systems investigated, f (Bo )  < 0.05; thus, rJ ~ do~2. Therefore, the influence o f  Bond 
number  is negligible, and the differences are believed to be due primarily to the orifice effect.) 

Density ratio does not appear  to have a pronounced  effect on droplet size in the seventeen 
Newtonian  and five power- law/Newtonian systems examined in the previous section. This is 
consistent with the previous analysis o f  Kinoshita et al. (1994). 

Inspection o f  [8] and [9] reveals that  both the most-unstable wave number  and droplet size can 
be written solely in terms of  the modified Ohnesorge number.  The modified Ohnesorge number  can 
be interpreted as a ratio o f  the effective viscous force to the interracial tension. Based on [9], droplet 
size increases as the effective viscosity increases or the interfacial tension decreases. Equat ion [9] 
has two limiting cases. When Z*<< 1, d = 1.88d0. This result agrees well with Tyler 's  experimental 
data  for water jets in air (Tyler 1933), for which d = 1.91d0 (for water jets in air, ~ do (Tyler 
1933)), Hence, for inviscid systems, the droplet size is independent of  fluid properties. When Z*>> 1, 
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d = 1.88 d0Z *~'6. This indicates that for highly viscous systems, droplet size is much larger than 
that predicted by Tyler's relationship. 

Concerning the orifice effect, [9] may be expressed more generally as 

d 
- - =  1.88~(1 + Z*) I/6, [19] 
do 

where ~ is an experimentally determined orifice parameter representing the effect of the initial 
disturbance. According to Grant & Middleman (1966), the initial disturbance depends only on 
Ohnesorge number, Z, for liquid-in-gas systems. For liquid-in-gas systems, Z* --* 3Z; therefore, in 
the present study, it is assumed that ~ = ~(Z*) for liquid-in-liquid systems. Based on experimental 
data presented in tables 1 and 2 (0.01 ~< Z* ~< 0.50), an empirical orifice parameter is determined 
to be 

= 1.1303 + 0.0236 In Z*. [20] 

The relationship between d/do and Z* based on [19] and [20] is shown in figure 2. Indeed, including 
into [9] significantly improves its accuracy at large modified Ohnesorge numbers (i.e. high 

viscosity systems). Excluding the single data point at Z * =  0.029 (system 8 in table 1), for 21 
liquid-in-liquid systems, the average difference between predicted and measured droplet diameters 
is 3.92% and the maximum difference is only 10.5%. Since the viscosities of the jet and the ambient 
liquid are proportional to the modified Ohnesorge number, in general, increasing viscosity leads 
to larger droplets. The density of the jet fluid and the interfacial tension both are in the denominator 
of Z*; therefore, denser jet fluids and larger interfacial tension tend to form smaller droplets. 

As an alternative to the present approach, [4] and [5] can be combined to predict droplet size; 
however, [5] must be solved numerically. Droplet sizes predicted from [4] and [5] for Newtonian 
systems (Kitamura et al. 1982) are also presented in table 1. Good agreement between the droplet 
sizes predicted in this study and those using [4] and numerical solutions to [5] are observed in 
table 1. Excluding system 8, the maximum difference between the two alternative droplet size 
predictions is only 2.4%. (For system 8, the value obtained from [4] and [5] is suspect, since the 
viscosity ratio for system 8 is 29 times that of system 7, which should result in larger droplets, as 
confirmed by experiment.) 

As mentioned in the section "Theory",  [6] and Tomotika's equation, [5], were obtained assuming 
the same conditions. Kinoshita et al. (1994) have shown that by applying appropriate conditions, 
[6] reduces to all published limiting solutions to Tomotika's equation. The systems presented in 
Table 1 do not belong to any of those limiting cases. The comparisons in table 1 demonstrate that 
[6] (and its reduced form, [7]) agrees well with Tomotika's equation in non-limiting cases as well. 
This suggests that, in general, predictions of the instability of liquid jets provided by [6] closely 
match those obtained from Tomotika's equation for the same conditions. However, in practice, 
[6] obviously is much simpler to use than Tomotika's equation, [5]. 

2.50 

2.25 

@ 2.00 

1.75 

[] P o w e r - l a w / N e w t o n i a n  sy s t ems  ^ / 

_ z3. N e w t o n i a n  s y s t e m s  [] A / 

[] 

D D  [] 

E q u a t i o n s  [191 a n d  [201 

1 . 5 o  , , , ~ , , , , I  , z~, ~ , , , , , I  , , ~ , , J , ~ l  
0.001 0.01 0. I 1.0 

Z # 
Figure 2. d /d  o = f ( Z * )  relationship based on []9] and [20]. 
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5. CONCLUSIONS 

Based on a model of uniform-size droplet formation, and employing the instability analysis 
developed previously by the present authors, a simple equation is obtained for the size of droplets 
formed during the breakup of cylindrical liquid jets. This droplet-size equation applies to 
low-velocity liquid jets, involving Newtonian or power-law non-Newtonian fluids. 

Predictions of droplet diameter from this study were compared with experimental data taken 
from the literature. Good agreement was observed--for seventeen Newtonian and five power-law/ 
Newtonian liquid-in-liquid systems, the average differences are 8.1 and 5.1%, respectively; for water 
jets in air (liquid-in-gas system), the difference is only 1.6%. 

The droplet diameter predictions from this study were also compared with those obtained from 
numerical solutions to Tomotika's equation for the seventeen Newtonian systems. Excellent 
agreement was observed. This suggests that the dispersion equation obtained previously by the 
present authors, [6], provides a simple alternative to Tomotika's complicated dispersion relation- 
ship. 

Neglecting the density ratio did not cause any substantial difference in the results for the 23 
liquid-in-liquid systems investigated (both Newtonian and power-law/Newtonian systems). For the 
five power-law/Newtonian systems, the effect of viscosity on droplet size was well accommodated 
by utilizing the apparent viscosity. In addition, it was demonstrated that droplet size is controlled 
by a single parameter, the modified Ohnesorge number. 
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